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ABSTRACT

A set of differential equations is derived for calculating

the intensity loss due to geometrical spreading of planar sound

rays in an inhomogeneous medium with a continuous index of

refraction varying both in depth and horizontally. They are

solved numerically for a mathematical model of an ocean with a

heat source. Intensity contours are presented for rays in the

vicinity of a heat source and a heat sink. The heat sink causes

the rays to converge which results in the formation of a caustic.

An approximate formula is derived for the point where this caustic

originates.
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INTRODUCTION

In two recent papers'1,2 a completely general technique for

tracing sound rays through an inhomogeneous medium, together with

some practical applications, were presented. These techniques were

developed and used by the U. S. Naval Weapons Laboratory to study

the effect of large-scale inhomogeneities on sound-ray patterns in

the ocean. Before then the tracing of sound rays was usually

restricted to media in which the speed of sound could be assumed

to be a function of one variable only. In the case of the ocean

this variable is the depth. In Ref. 1 two mathematical models of

an ocean were constructed in which the index of refraction was a

function of two space variables. One of these models represents

a heat source, or heat sink, superposed on an otherwise homogeneous

ocean. The other is a model of a thermal mixing zone designed to

approximate the acoustical features of the Gulf Stream. With the

aid of a high-speed digital computer (IBM 7030) the general eikonal

equation of geometrical acoustics was solved, and sound rays were

traced for various positions of a point sound-source for both of

these models. The results showed that acoustic inhomogeneities of

an ocean in the horizontal direction, such as presented by the Gulf

Stream, or large circulating eddies with strong temperature gradients,

can give a substantially different sound-ray pattern from that which
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one would get if the index of refraction were assumed to vary with

depth only. Among the results for the Gulf Stream model two were

most conspicuous: (1) the ranges of surface shadow zones were

found to be in error up to 50%, and (2) new shadow zones were

found, which could not be predicted with a one-dimensional speed-

of-sound gradient.

I. DISCUSSION OF THE PROBLEM

It is the purpose of this paper to complement the results of

the heat-source model by calculating the intensity loss due to

geometrical spreading of the sound rays. The basic principle for

calculating intensities in geometrical acoustics is simple: one

considers a small cone of rays emanating from a point-source of

sound. The total acoustic power transmitted along this cone is

assumed to be constant. It then follows that the intensity at any

point along the rays of that cone is inversely proportional to the

cross-sectional area of the cone at that point. This will account

correctly for the change in intensity which is due to the spread-

ing or convergence of the rays. A further diminution of intensity

will result in general due to dissipation, scattering, and other

attenuation effects. This paper is concerned only with the former

effect. The latter can be handled most effectively with a semi-

empirical expression for an attenuation coefficient. For the

2
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ocean such a coefficient can be found in Ref. 3.

Although the physical idea as outlined above for the

calculation of spreading loss is exceedingly simple, its trans-

lation into an analytical expression for the change of the cross-

sectional area of a bundle of rays along the cone has been accom-

plished so far for media with a speed of sound varying in only one

space direction. A recent exception is Ref. 4, where a formal

expression is derived for a general medium. Intensity calculations,

therefore, were limited heretofore to media varying in only one

space direction. Derivations of this can be found in any

elementary textbook; see, for instance, Refs. 5 and 6. All such

derivations express the intensity in terms of functions which

depend on the explicit knowledge of the equations for the ray

paths, and do not lend themselves readily for an extension to

media where the speed of sound depends on more than one space

variable.

G. Anderson et a17 have recently presented a new approach, but

still restricted to one-dimensional, continuous speed-of-sound pro-

files. They derive a set of differential equations for the func-

tions appearing in the expression for intensity, so that an

explicit knowledge of the ray equations is not necessary. We

borrow their idea and extend it to include cases where the speed

3
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of sound depends on two variables, restricted to those rays which

alway3 remain in one plane. This is just sufficient for the appli-

cations we wish to consider here, namely, the mathematical model of

an ocean with a heat source in Ref. 1.

II. INTENSITY EQUATIONS

A. Expression for Spreading Loss Ns

In a medium with index of refraction n, the acoustic ray paths

are given by the solutions of the eikonal equation, which in vector

5,6
form can be written as

d (nr') = , (1)
d n

with initial conditions

s = 0 : r(0), r'(O) . (2)

Here s is the independent variable arc length, r = r(s) is the

position vector of the ray as a function of s, and r' = dr/ds is

the unit tangent vector. In a Cartesian coordinate system

(x, y, z), for a medium in which n = n(y, z) is a function of y and z

only, and for rays which start out initially in the y-z plane, Eq. (1)

takes the form:

X = 0, (3a)

+ b(y')2 + cy'z = b , (3b)

z + by1z 1+ c(z') 2  C , (3c)

with b =- n i n
n 2y nz "(3d)

4
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The spreading loss N., in db, is defined by

Ns = 10 loglojio/Ij , (4)

where I is the intensity at a general point along a given ray, and

Io is the intensity at unit distance from the source. For n = n(z)

only, a suitable expression for Ns has been derived by Anderson

et al (Ref. 7, Eq. 5b), which in the present notation reads

=10 log y , Zt (5)

In this equation go is the initial inclination of the ray, and

Zt = (Oz/beo)t where the subscript t indicates that the variable

time is to be held constant in the partial differentiation. In

this paper the appropriate independent variables are s and Go.

Equation (5), however, was derived in Ref. 7 with the time t and

60 as independent variables. A straightforward transformation,

(see appendix A, Eq. (A14)), from (t, 60 ) to (s, 80) as independ-

ent variables brings Eq. (5) into the following form:

Ns = 10 log (y - yY))(y'Z - z Y) (6)cose,

where Y and Z are the corresponding partial derivatives with s

held fixed:

We wish to show now that Eq. (6) is also suitable within a

good approximation for a two-parameter index of refraction

5
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n = n(y, z), for rays which remain in the y-z plane. To do this

most clearly it is desirable to review briefly the derivation of

Eq. (5) as given in Ref. 7. Figure 1 shows the geometry of a

typical ray bundle determined by the angles AG0 and Aao. The only

difference between this figure and the corresponding figure in

Ref. 7 is that & is not a constant any more. At the point 0, unit

distance away from the source (yo, zo), the cross-sectional area of

this bundle is given by AA0 = cosoA~oYao . At the general point

P(y, z) the corresponding area is AA = rAoWA~O , where

WAeo = ZtAeo/cosO is the length of the arc PP'. Note that

Zt = (az/6@o)t is the partial derivative evaluated at constant t.

This must be so, since the cross-sectional area by definition must

be congruent with a wavefront, which is a surface of constant phase.

The ratio of the intensities in Eq. (4) now becomes:

I0 = 0 A r Zt __ (8)

I MAc coseocose NYc

When AY = Ao remains constant, r = y - yo, and Eq. (8) yields the

result of Eq. (5). For the more general case we must now evaluate

r and A,/ o 0

To get an expression for &x in terms of ao we take advantage

of the fact that the index of refraction n does not depend on x.

6
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The x-component of Eq. (1), therefore, yields the simple relation

nx= n(O)x'(0) = const . (9)
1 I.

Referring to Fig. lb one sees that x' sin (1Ack) , since x is

the direction cosine of the ray with respect to the x-axis. The

index of refraction can be defined to be unity at the source

s = 0: n(O) = 1. It follows from Eq. (9) that

sin(jtr)/sin½(tao) = 1/n . (10)

In the limit Ao -• 0, AY -• 0 this reduces to

dd/dao = 1/n . (11)

Considering Fig. lb again, one sees the following relations

between r, y, p and 1:

(y - yo) A% + £ - rAe' (12a)

. -• p(Aa - Acio) .(12b)

Substituting Eq. (12b) into Eq. (12a) and using Eq. (11), we get

r - (y - y 0 )n + p(l - n) . (13)

It is clear from the geometry of Fig. lb that in the limit as

Aao - 0, p in general may remain of the order of r. The index

of refraction n, however, is a slowly varying function about the

value n = 1. For the model considered in this paper n remains

within the range 0.94 < n < 1.06. It is a very good approximation,

therefore, to neglect the last term in Eq. (13). In that case

Eqs. (8), (11) and (13) combine to give an expression for Ns which

is identical with Eq. (5).

7
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A more rigorous expression for r can be obtained. Consider the

point (x,y) in Fig.lb. An infinitesimal extension of the ray path at

this point satisfies the relation dx = tan(½Au)dy - ½Aody = (A//2n)dy.

Also r = x/J(AQ) = nx/'(&xio). In the limit these expressions become

exact, and yield

r = n f dy .(14)

yon

We see then that the approximation made in the last paragraph is

equivalent to replacing n in the integrand of Eq. (14) by its mean

value, unity. Equation (14) substituted into Eq. (8) would give an

exact result for Ns. However, in view of the good approximation, the

much simpler Eq. (6) was used for the succeeding numerical calculations.

A very conservative estimate shows that the results cannot be in

error by more than ±0.2 db. By the same method it is easy to show

that in the limit do -- 0, p assumes the following value

lim n - (15)

B. Expressions for Y and Z

There remains now to find suitable expressions for the partial

derivatives Y and Z which appear in Eq. (6). From the identities

I 1

y cose, and z = sinG, one obtains by differentiation with respect

8
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to 00, and an interchange of the 80 and s derivatives

YZ'y ; (16)

where:

e= * 
(17)

To obtain the differential equation for ® consider the eikonal

equations (3b) and (3c). They can be rewritten, using the identity

(y,4) + (z 1:

- (cy - bz')z , (18a)

(cy' - bz )y . (18b)

The curvature of a ray, which in general is given by

= ±[(y ) 2 + (z )i]i, follows immediately:

(ast) = -o(cy' - bz') . (19)

By examining all possible cases one can readily verify that the lower

sign in Eq. (19) is extraneous. Differentiating Eq. (19) with

respect to 00, and using the relations in Eq. (16), one obtains

the equation which determines ® :

0 = (C - bG)y' - (B + ce)z' , (20)

where B and C are given by:

B = (6b/6eo)s = (ýb/ýy)Y + (6b/bz)Z , (21a)

C = (Oc/680 )s = (Oc/ýy)Y + (bc/bz)Z . (21b)

9
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Equations (16) and (20) constitute a set of three simultaneous

first-order differential equations, which for any given index of

refraction n(y, z) can be integrated together with the eikonal

Eqs. (3). It will be noticed that in order to calculate the

spreading loss, N in Eq. (6), only Y and Z are needed. Thus, oneS

could easily eliminate 8 from the set of equations (16) and (20),

reducing it to one second-order and one first-order equation. For

numerical integrations, however, the present form is more convenient.

C. Initial Conditions

The initial conditions for the ray-trace system (3) are given

by Eq. (2). At s = 0

y(O) = Yo

z(O) = zo , (22)

e(o) = on

Differentiation with respect to 60 yields the initial conditions

for the system of differential equations (16) and (20):

Y(O) = Z(O) 0
(23)(9(0) = I

These are identical with the corresponding initial conditions

in Ref. 7. They are sufficient for a boundless medium with a

continuous index of refraction. If the medium has a reflecting

surface, or some other discontinuities such as interfaces where the

10
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gradient of the speed-of-sound is not continuous, further condi-

tions at such boundaries are necessary. These will be discussed

in a forthcoming paper. For the purposes of this work, the theory

presented so far is sufficient, since it will be applied to a

medium without any reflecting surfaces and with an index of

refraction which is everywhere continuous.

III. APPLICATION TO A TWO-DIMENSIONAL HEAT SOURCE IN AN OCEAN

The preceding equations are now applied to the calculation of

spreading loss in a horizontal plane of an ocean with a heat source.

The quantitative description of this model together with actual ray

paths are presented in Ref. 1 and 8. Here follows a brief summary.

The heat source is located at the origin, r = 0. The index of

refraction is given by

n(y, z) = I + ke-r2 (24)

where r2 = y 2 + z2 in normalized coordinates, and k is a measure of

the source strength, which is proportional to the temperature dif-

ference between the heat source and the ocean at a large distance

from the origin. Numerical calculations with the Runge-Kutta

method were made for two values of k, both corresponding to a

temperature difference of 20*C:

k = - 0.0631 : heat source,

k = + 0.0631 : heat sink.

11
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The point-source of sound was taken for both cases to be ten units

from the heat source (sink). Numerical calculations were carried

out within the ranges - 10 •y • 20, - 4 • z ! 4 . It was found

that an integration step As = 0.1 yielded sufficient accuracy.

A. Discussion of the Results

Figures 2 and 3 show a few selected ray paths in the vicinity

of a heat source and sink, respectively. It is seen that a heat

source (sink) causes the rays to diverge (converge), but nothing

more quantitative about the intensity can be inferred from these

figures.

The intensity field can be presented in several ways. In

its original form one gets the spreading loss Ns from the solutions

of Eqs. (6), (16) and (20) at every integration point sn on a given

ray. This, however, is not the most useful form for presentation

purposes. We chose to display steady state intensity contours

instead. This required covering the whole (y-z) plane with a

sufficient density of rays in order to be able to interpolate

between these rays. For the present calculations 23 rays were used

with the following initial angles: e0o = 00, 15-, 30', 451, 10,

1030/, 20, 20301, 30, 3030/, 40, 4030/, 50, 50301, 60, 80, 100, 150,

200, 300, 450, 600, and 800. Only a few of these are shown in

Figs. 2 and 3. At points where two rays intersect, as in Fig. 3,

12
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one gets two different values for Ns. In reality, of course, the

intensity at such points is uniquely determined by interference

effects. One should, therefore, take into account the phase dif-

ference of the two rays at that point. A suitable method for doing

this is indicated in Ref. 9. For steady-state conditions, however,

one of the values of Ns will usually be much smaller than the other

if the two rays traverse different paths. So in our calculations

we retained only the smaller value of Ns at such points. An excep-

tion arises if the point of intersection lies on an envelope. In

such a case the two paths become congruent in a limit. But this,

of course, is precisely the condition for the formation of a

caustic6, where the intensity becomes infinite, Ns = -

The calculated intensity contours around a heat source and heat

sink are shown in Figs. 4 and 5. The location of the heat source

(sink) is marked by an asterisk. The point sound-source is off

the figure at (-10, 0). Up to y = - 5 the contours are essentially

circular, which implies spherical spreading. In the vicinity of

the heat source (sink) and beyond, however, they become progres-

sively more distorted. Figure 4 shows typical intensity contours

produced by the heat source which diverges the rays in its vicinity.

In Figure 5, however, the rays converge as they pass by the heat

sink. This produces a caustic which is indicated by the heavy,

13
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dashed line. It branches out on both sides of the y-axis begin-

ning at approximately y = 9.5. The point on the y-axis where the

caustic starts can be given approximately in closed form as a

function of k and the distance L between the point-source of sound

and the heat sink. This is done in appendix B with the result:

Yc L (25)
2•/ý kL - 1

For Figure 5, L = 10, Equation (25) predicts the value yc = 8.084,

which agrees fairly well with the calculated result. Equation (25)

also shows that for a given sink-strength k there exists a minimum

distance between the sound source and the heat sink for the forma-

tion of a caustic. Since Yc must be positive, it follows that

L > 1/2A/1 k in order that a caustic may form.

IV. CONCLUSIONS

Equations (3), (6), (16) and (20) are sufficient for calculat-

ing acoustic spreading losses for planar rays in an unbounded medium

with a continuous index of refraction varying in two space direc-

tions. For a medium bounded by reflecting surfaces, and/or by

interfaces across which the gradient of the index of refraction

changes discontinuously, further boundary conditions are necessary

to supplement these equations. This will be done in a future

report, and the results will be applied to calculate intensity-

14
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contours for the mathematical model of the Gulf Stream described in

Refs. 1 and 8.
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APPENDIX A

General Transformation of a Function with Independent Variables

(t, e0) to (s, eo)
In going from Eq. (5) to Eq. (6) it was necessary to transform

the set of independent variables from (t, O0) to (s, 0o). Specif-

ically, it was required to have the partial derivative Zt = (bz/BOO)t

at constant time in terms of corresponding derivatives at constant

arc length s.

Let f be any function on a ray path e0 . It can be expressed

either as a function of s and eo, or as a function of t and GO:

f(s, G.) or f(t, 80). A general differential can then be written:

df=fds + Fsdeo = dt + Ftdeo (Al)

Here primes indicate differentiation with respect to s, capital

letters indicate differentiation with respect to e., e. g.:

Fs = (Of/a8o) s , and the subscripts indicate the variable which is

held fixed. At constant t the relation (Al) becomes:

Ft - Fs = feo6i( o . (A2)

To obtain a suitable expression for (Bs/beo)t consider s as a func-

tion of y and z:

s = s(y(eo,t) , z(oo,t)) . (A3)
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Differentiating (A3) with respect to e0 we get:

(!sKt =AYt + BZt ' (A4)

with the coefficients

A= B- (Is'Y (A5)
\ty-Jz a~z/)y

Again consider s with the following functional relationship:

s = s(y(0o,S), z(eos)). (A6)

Differentiation of (A6) with respect to s and e0 yields:

1 = A (-ý Lzs)eo + B (ýS)6 (A7)

0 = AY + BZ S (A8)
S s

The coefficients of A and B in Eq. (A7) are just the direction

cosines of the ray, y' = cosO and z" = sine, respectively. The

solution of Eqs. (A7) and (A8) gives

A = - zs B = Y. (A9)
z Ys "y'Zs zlYs " y'Zs

Thus Eq. (A4) becomes:

__ _ yszt - z5Yt (AlO)
ag) z "YS - y IZ5

Going back to Eq. (A2), let f be successively y and z. The results

are:
I

t= s+ (Zt ZS)
z

l (All)

Z Z +--(Y -Y )(l

t s y t s

2
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Equations (All) can be shown to be not independent, so that

they are not sufficient to solve for Zt in terms of Ys and Zs.

An additional, independent relation between Yt and Zt is required.

This relation is provided by the fact that t=const. describes sur-

faces of constant phase (wave fronts) which are normal to the rays.

One such surface together with the position vector of the ray r,

its direction r' = (brIas) 8,, and the vector Rtd eo, are shown in

Fig. 6, where

R-- Y- + Zk (A12)

The requirement that Rt be perpendicular to r' can be expressed as

Rt r=Yty I+ Ztz = 0 . (A13)

With this, Eqs. (All) can finally be solved for Zt in terms of

and= Y'(Y'Zs - z'YS) (A14)

This is the expression which was used to transform Eq. (5) into

Eq. (6).

3
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APPENDIX B

An Approximate Formula for the Point of Origin
of the Caustic formed by a Heat Sink

In this section an approximate expression (Eq. (25)) will be

derived from yc -_ the point along the y-axis where a caustic is

formed for sound rays in the vicinity of a heat sink.

A caustic is defined in general as an envelope of the rays.

Thus we wish to find the point on the y-axis in Fig. 3 where such

an envelope starts. Specifically, we wish to determine the limit-

ing point of intersection of the y-axis (00 ray), with a ray which

starts out at an angle a, in the limit a - 0. The situation is

shown in Fig. 7. The equations of the ray paths are not known

analytically. It is known, however, 1 that asymptotically, far

away from the sink the rays are straight lines. It is a reasonably

good approximation, therefore, to represent the rays by the two

linear segments which coincide with their asymptotes. In Fig. 7

these are shown as the two straight lines AB and BC. We thus need

lim
Yc = Y, 0• L 0l

The total angle of deviation 0 is derived under the same approxi-

mation in Ref. 1 (Eq. 22)), where it is found to be

o 21/r kTe- 1
, (B2)
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where Ti is the normal distance between the asymptote and the heat

sink. From the two triangles in Fig. 7 the following relations

are readily established:

sin a =iL , (B3)

L- T sin y _ licos e (BO
sin P sin(e - C)"

Applying L'Hospital's rule to Eq. (B4) we find:

lim Fcose - TisinGO(/M•) (B
Yc = " F~oseo (B/5)-/aq)

From (B2) and (B3) one gets:

"lim __ - 2$•k (B6)

lim (B7T -*0 \/ L "

Evaluation of the limit in Eq. (B5) with these values yields

Eq. (25) in the text:

L (B8)
Yc= 2TkL. 1

2
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